Mathematics for Machine Learning and AI I Essentials

dkmdkm

U P L O A D E R
73e13dde55e07562cc09bceec38f3015.avif

Free Download Mathematics for Machine Learning and AI I : Essentials
Published 8/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 8h 18m | Size: 3.03 GB
Linear Algebra, Calculus, Optimization for Machine Learning and AI Fundamentals

What you'll learn
Understand and apply key concepts in linear algebra, including vector operations, subspaces, and eigenvalues.
Learn the foundations of calculus and multivariable calculus needed for machine learning models.
Master probability theory, Bayes' theorem, and statistical tools like MLE and hypothesis testing.
Apply essential optimization techniques such as gradient descent, KKT conditions, and linear programming in Python.
Requirements
Basic high school-level algebra and geometry knowledge is helpful but not required.
A willingness to learn mathematical concepts with practical relevance to AI and data science.
Description
This course is designed to give you a complete mathematical foundation for understanding and applying machine learning and AI methods in practice. Whether you're preparing for advanced ML courses or working on real-world projects, this course ensures you understand the math that powers it all - without needing a degree in mathematics.We start with linear algebra - vectors, subspaces, eigenvalues, and orthogonality - and explain how they're used in ML algorithms. You'll not only learn the theory but also see hands-on applications in Python and MATLAB, especially for eigenvalues and orthogonalization.Then we move into calculus and multivariable calculus: functions, derivatives, partial derivatives, Hessians, and Lagrange multipliers. These are essential for understanding how models learn and optimize.Next comes probability and statistics: foundational probability concepts, distributions, Bayes' theorem, hypothesis testing, and MLE - everything you need for probabilistic reasoning in AI systems.Finally, we go into optimization: gradient descent, RMSProp, AdaGrad, KKT conditions, and linear programming. You'll understand how models are trained, constrained, and improved over time.The content is clear, structured, and applied. You'll learn both the mathematical logic and how it's implemented in code. No prior programming or ML knowledge is assumed - just a desire to learn.By the end of this course, you'll be confident in your math skills and ready to move forward in your machine learning and AI journey.
Who this course is for
Aspiring data scientists, machine learning engineers, or AI enthusiasts who want a solid foundation in math.
Students in engineering, computer science, or related fields preparing for advanced ML courses.
Professionals looking to refresh or deepen their understanding of core math concepts used in AI.
Homepage
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!


Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
No Password - Links are Interchangeable
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten