
Titel: Jochen Hirschle - Deep Natural Language Processing – Einstieg in Word Embedding, Sequence-to-Sequence-Modelle und Transformers mit Python
Genre: Management
Format: PDF
Sprache: German
Größe: 4.4 Mb
Hoster: Filefox, Katfile
Passwort: John
Info:
- Von der logistischen Regression über Feed-Forward-Netze zu Encoder-Decoder-Modellen - Leicht verständlich mit textbasierten Erklärungen und wenigen Formeln
- Mit Fokus auf der Verarbeitung deutschsprachiger Texte
- Ausführliche Python-Code-Erläuterungen im Buch und Jupyter Notebooks auf GitHub
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
Das Buch bietet eine leicht verständliche Einführung in Machine-Learning-Algorithmen im Allgemeinen und in die Verarbeitung von Textdaten mit Deep-Learning-Verfahren im Besonderen. Es veranschaulicht die theoretischen Konzepte bewährter und neuerer NLP-Ansätze und führt in die praktische Umsetzung ein.
Im Fokus stehen insbesondere folgende Verfahren:
. Vektorisierung von Wörtern mit Word Embedding.
. Verarbeitung von Texten mit rekurrenten und konvolutionalen neuronalen Netzen.
. Aufbau von Sequence-to-Sequence-Modellen zur Übersetzung und für Textzusammenfassungen.
. Arbeit mit der Transformers-Bibliothek und Hugging Face.
Anhand praktischer Anwendungen (Klassizierung von Texten, Rechtschreibkorrektur, Übersetzung, Frage-Antwort-System) wird gezeigt, wie sich Textdaten vorbereiten und effektive Lernmodelle mit Bibliotheken wie Transformers, TensorFlow/Keras und Scikit-Learn aufbauen, trainieren und produktiv einsetzen lassen.
- Mit Fokus auf der Verarbeitung deutschsprachiger Texte
- Ausführliche Python-Code-Erläuterungen im Buch und Jupyter Notebooks auf GitHub
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
Das Buch bietet eine leicht verständliche Einführung in Machine-Learning-Algorithmen im Allgemeinen und in die Verarbeitung von Textdaten mit Deep-Learning-Verfahren im Besonderen. Es veranschaulicht die theoretischen Konzepte bewährter und neuerer NLP-Ansätze und führt in die praktische Umsetzung ein.
Im Fokus stehen insbesondere folgende Verfahren:
. Vektorisierung von Wörtern mit Word Embedding.
. Verarbeitung von Texten mit rekurrenten und konvolutionalen neuronalen Netzen.
. Aufbau von Sequence-to-Sequence-Modellen zur Übersetzung und für Textzusammenfassungen.
. Arbeit mit der Transformers-Bibliothek und Hugging Face.
Anhand praktischer Anwendungen (Klassizierung von Texten, Rechtschreibkorrektur, Übersetzung, Frage-Antwort-System) wird gezeigt, wie sich Textdaten vorbereiten und effektive Lernmodelle mit Bibliotheken wie Transformers, TensorFlow/Keras und Scikit-Learn aufbauen, trainieren und produktiv einsetzen lassen.
Download From Filefox
Bitte
Anmelden
oder
Registrieren
um Links zu sehen.
Download From Katfile
Bitte
Anmelden
oder
Registrieren
um Links zu sehen.