Applied Machine Learning Ensemble Learning (2025)

jinkping5

U P L O A D E R

image3.jpg

Applied Machine Learning: Ensemble Learning (2025)
Released 02/2025
With Matt Harrison
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Skill level: Intermediate | Genre: eLearning | Language: English + subtitle | Duration: 1h 28m 23s | Size: 208 MB​

Learn to use ensemble techniques like bagging, boosting, and stacking to improve your machine learning models.
Course details
Do you want to grow your skills as a machine learning practitioner, but don't know where to begin? You don't need any formal training in data science to start working toward your goal. In this course, instructor Matt Harrison guides you through the key concepts of ensemble learning. Explore different ensemble methods like bagging, boosting, and stacking and learn to implement them using popular Python libraries such as scikit-learn and XGBoost. By the end of this course, you'll be equipped with the skills you need to implement and optimize ensemble models in real-world machine learning tasks.This course is integrated with GitHub Codespaces, an instant cloud developer environment that offers all the functionality of your favorite IDE without the need for any local machine setup. With GitHub Codespaces, you can get hands-on practice from any machine, at any time-all while using a tool that you'll likely encounter in the workplace. Check out "Using GitHub Codespaces" with this course to learn how to get started.
Homepage
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

30ce3b5d0341e16b2d3194776cd14ac3.jpg

Applied Machine Learning: Ensemble Learning
Duration: 2h 25m | .MP4 1280x720, 30 fps(r) | AAC, 48000 Hz, 2ch | 1.23 GB
Genre: eLearning | Language: English​

Do you want to grow your skills as a machine learning practitioner, but don't know where to begin? You don't need any formal training in data science to start working toward your goal. In this course, instructor Derek Jedamski shows you how to harness messy data, find signal in it, and build models that make powerful predictions with ensemble learners, one of the most common classes of machine learning algorithms.

Review the basics of the machine learning pipeline to find out where ensemble learners sit within it. Learn about the underlying theory that drives ensemble learners, covering examples of ensemble learning in Python and then implementing models of your own. Explore concepts like boosting, bagging, and stacking, and how to use each and when. Get the tools you need to ramp up your predicting power and advance your machine learning skills today.

Bitte Anmelden oder Registrieren um Links zu sehen.


jDkMjUOR_o.jpg



DDownload
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
RapidGator
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
NitroFlare
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten