Advanced Text Analytics Topic Modeling and Named Entity Recognition

dkmdkm

U P L O A D E R
a4a81614aa04e014de05cd5aceadc0ef.jpg

Free Download Advanced Text Analytics Topic Modeling and Named Entity Recognition
Released 3/2024
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: Beginner | Genre: eLearning | Language: English + vtt | Duration: 40m | Size: 114 MB
Learn how to use advanced topic modeling and named entity recognition (NER) for text analytics, covering the math and code behind topic modeling and NER algorithms (e.g., transformer-based) and how to integrate both in your workflows.

As our primary mode of communication, text surrounds us -- in books, articles, social media posts, reviews, emails, and more. By leveraging text analytics, we can extract meaningful insights from this data and make intelligent decisions (for example, via sentiment analysis).
In this course, Advanced Text Analytics: Topic Modeling and Named Entity Recognition, you'll gain the theory and practical implementation skills to apply advanced topic modeling and named entity recognition (NER) techniques for real-world use cases.
First, you'll explore the motivation and concept behind using topic modeling for discovering patterns and themes in text. Next, you'll dive deeper into the mathematical and programmatic implementation of a popular topic-modeling algorithm, latent Dirichlet allocation (LDA). Then, you'll learn how to implement NER, including its algorithms such as conditional random fields, transformer-based methods, and more. Finally, you'll look at how to combine topic modeling and NER for analyzing complex texts, and how to draw insights from the results.
When you're finished with this course, you'll have the skills and knowledge of evaluating and applying advanced topic modeling and named entity recognition algorithms needed to perform text analytics for your use cases.
Homepage
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!







Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
No Password - Links are Interchangeable
 
Kommentar
cbfb3a0f72bdf5cb44a6af073c440bd6.jpg


Advanced Text Analytics: Topic Modeling and Named Entity Recognition
.MP4, AVC, 1280x720, 30 fps | English, AAC, 2 Ch | 40m | 114 MB​

Instructor: Ria Cheruvu
Learn how to use advanced topic modeling and named entity recognition (NER) for text analytics, covering the math and code behind topic modeling and NER algorithms (e.g., transformer-based) and how to integrate both in your workflows.

What you'll learn

As our primary mode of communication, text surrounds us - in books, articles, social media posts, reviews, emails, and more. By leveraging text analytics, we can extract meaningful insights from this data and make intelligent decisions (for example, via sentiment analysis).

In this course, Advanced Text Analytics: Topic Modeling and Named Entity Recognition, you'll gain the theory and practical implementation skills to apply advanced topic modeling and named entity recognition (NER) techniques for real-world use cases.

First, you'll explore the motivation and concept behind using topic modeling for discovering patterns and themes in text. Next, you'll dive deeper into the mathematical and programmatic implementation of a popular topic-modeling algorithm, latent Dirichlet allocation (LDA). Then, you'll learn how to implement NER, including its algorithms such as conditional random fields, transformer-based methods, and more. Finally, you'll look at how to combine topic modeling and NER for analyzing complex texts, and how to draw insights from the results.

When you're finished with this course, you'll have the skills and knowledge of evaluating and applying advanced topic modeling and named entity recognition algorithms needed to perform text analytics for your use cases.

Bitte Anmelden oder Registrieren um Links zu sehen.


455510553_8gcpm9rwq01c.jpg


363506399_rg.png

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
374887060_banner_240-32.png

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
361444878_fikper.png

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten