Udemy Deep Learning Prerequisites: Linear Regression in Python

0dayddl

U P L O A D E R

690875232_yxusj-juy0mq7d6549.jpg

Udemy - Deep Learning Prerequisites: Linear Regression in Python
Size: 431.25 MB | Duration: 3 hrs 58 mns | Video: AVC (.mp4) 1280x720 29.97fps | Audio: AAC 48KHz 2ch
Genre: eLearning | Language: English | + Quizzes​

Data science: Learn linear regression from scratch and build your own working program in Python for data analysis.

Requirements:
• How to take a derivative using calculus
• Basic Python programming
• For the advanced section of the course, you will need to know probability
• For the advanced section of the course, you will need to know the Gaussian distribution

This course teaches you about one popular technique used in machine learning, data science and statistics: linear regression. We cover the theory from the ground up: derivation of the solution, and applications to real-world problems. We show you how one might code their own linear regression module in Python.

Linear regression is the simplest machine learning model you can learn, yet there is so much depth that you'll be returning to it for years to come.

That's why it's a great introductory course if you're interested in taking your first steps in the fields of:
• deep learning
• machine learning
• data science
• statistics

In the first section, I will show you how to use 1-D linear regression to prove that Moore's Law is true. What's that you say? Moore's Law is not linear?

You are correct! I will show you how linear regression can still be applied.

In the next section, we will extend 1-D linear regression to any-dimensional linear regression - in other words, how to create a machine learning model that can learn from multiple inputs.

We will apply multi-dimensional linear regression to predicting a patient's systolic blood pressure given their age and weight.

Finally, we will discuss some practical machine learning issues that you want to be mindful of when you perform data analysis, such as generalization, overfitting, train-test splits, and so on.

This course does not require any external materials. Everything needed (Python, and some Python libraries) can be obtained for FREE.

If you are a programmer and you want to enhance your coding abilities by learning about data science, then this course is for you. If you have a technical or mathematical background, and you want to know how to apply your skills as a software engineer or "hacker", this course may be useful.

NOTES:
• All the code for this course can be downloaded from my github: /lazyprogrammer/machine_learning_examples
• In the directory: linear_regression_class
• Make sure you always "git pull" so you have the latest version!

690875248_yxusj-78zd89qn6dt8.jpg

jwdLJdQm_o.jpg



DDownload
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
RapidGator
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
NitroFlare
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten