Python Data Science Cookbook Practical solutions across fast data cleaning, processing, and machine learning workflows with

booksz

U P L O A D E R
e2f30755a81c1a7419ef94fc6f1cf6a6.webp

Free Download Python Data Science Cookbook: Practical solutions across fast data cleaning, processing, and machine learning workflows with pandas, NumPy, and scikit-learn
English | June 9, 2025 | ASIN: B0FCD22PPS | 213 pages | EPUB (True) | 970.91 KB
This book's got a bunch of handy recipes for data science pros to get them through the most common challenges they face when using Python tools and libraries. Each recipe shows you exactly how to do something step-by-step. You can load CSVs directly from a URL, flatten nested JSON, query SQL and NoSQL databases, import Excel sheets, or stream large files in memory-safe batches.

Once the data's loaded, you'll find simple ways to spot and fill in missing values, standardize categories that are off, clip outliers, normalize features, get rid of duplicates, and extract the year, month, or weekday from timestamps. You'll learn how to run quick analyses, like generating descriptive statistics, Descriptionting histograms and correlation heatmaps, building pivot tables, creating scatter-matrix Descriptions, and drawing time-series line charts to spot trends. You'll learn how to build polynomial features, compare MinMax, Standard, and Robust scaling, smooth data with rolling averages, apply PCA to reduce dimensions, and encode high-cardinality fields with sparse one-hot encoding using feature engineering recipes.
As for machine learning, you'll learn to put together end-to-end pipelines that handle imputation, scaling, feature selection, and modeling in one object, create custom transformers, automate hyperparameter searches with GridSearchCV, save and load your pipelines, and let SelectKBest pick the top features automatically. You'll learn how to test hypotheses with t-tests and chi-square tests, build linear and Ridge regressions, work with decision trees and random forests, segment countries using clustering, and evaluate models using MSE, classification reports, and ROC curves. And you'll finally get a handle on debugging and integration: fixing pandas merge errors, correcting NumPy broadcasting mismatches, and making sure your Descriptions are consistent.
Key Learnings
You can load remote CSVs directly into pandas using read_csv, so you don't have to deal with manual downloads and file clutter.
Use json_normalize to convert nested JSON responses into simple tables, making it a breeze to analyze.
You can query relational and NoSQL databases directly from Python, and the results will merge seamlessly into Pandas.
Find and fill in missing values using IGNSA(), forward-fill, and median strategies for all of your data over time.
You can free up a lot of memory by turning string columns into Pandas' Categorical dtype.
You can speed up computations with NumPy vectorization and chunked CSV reading to prevent RAM exhaustion.
You can build feature pipelines using custom transformers, scaling, and automated hyperparameter tuning with GridSearchCV.
Use regression, tree-based, and clustering algorithms to show linear, nonlinear, and group-specific vaccination patterns.
Evaluate models using MSE, R², precision, recall, and ROC curves to assess their performance.
Set up automated data retrieval with scheduled API pulls, cloud storage, Kafka streams, and GraphQL queries.
Table of Content
Data Ingestion from Multiple Sources
Preprocessing and Cleaning Complex Datasets
Performing Quick Exploratory Analysis
Optimizing Data Structures and Performance
Feature Engineering and Transformation
Building Machine Learning Pipelines
Implementing Statistical and Machine Learning Techniques
Debugging and Troubleshooting
Advanced Data Retrieval and Integration


Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Links are Interchangeable - Single Extraction
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten