jinkping5

U P L O A D E R
92bdc450686a4213bdeacb363276ca49.jpg

Pyspark - Zero To Superhero
Published 9/2025
Created by Ganesh Kudale
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: Intermediate | Genre: eLearning | Language: English | Duration: 8 Lectures ( 1h 53m ) | Size: 711 MB​


PySpark and Spark SQL
What you'll learn
Basics of PySpark
Reading PySpark Data Frame and various methods of creating PySpark Data Frames
Processing using PySpark Data Frames and Spark SQL - Deep Dive
Write Transformed Results from Data Frame to Expected Location
Requirements
Basics of Python Programming and Basics of SQL
Description
Course Description:This hands-on course is designed for aspiring and experienced data engineers who want to master PySpark-the powerful distributed computing framework built on Apache Spark. Led by Ganesh Kudale, a seasoned data engineer, the series walks learners through real-world scenarios, from foundational concepts to advanced transformations, with a strong focus on production-grade pipeline development.What You'll Learn:pySpark Essentials: RDDs, Data Frames, and Spark SQLData Ingestion & ETL: Reading from CSV, JSON, ParquetTransformations & Actions: Filtering, joins, aggregations, and window functionsWho Should Enroll:Data engineers working with big data platformsDevelopers transitioning from SQL to PySparkProfessionals building scalable pipelines in Big DataAnyone preparing for Spark-related interviewsCurriculum - Session 1 - Creating the raw data frame Session 2 - Defining the Schema in PySpark Session 3 - Reading the data frame from file stored at storage location Session 4 - Different ways of creating the data frame Session 5 - Transformations and Action in Apache Spark Session 6 - Data Frame Read Modes Session 7 - PySpark withColumn Transformation Session 8 - PySpark datatype conversions Session 9 - withColumn in PySpark VS spark SQL Session 10 - PySpark select transformation Session 11 - PySpark selectExpr Transformation Session 12 - Performance difference between select, selectExpr and withColumn transformations Session 13 - Renaming the column in PySpark data frame and using Spark SQL Session 14 - Performance efficient approach for renaming columns in PySpark data frame Session 15 - Filtering data in PySpark Session 16 - Efficient ways to filter the data in PySpark Session 17 - Sorting in PySpark Single Column Session 18 - Sorting in PySpark - Multiple Columns Session 19 - Sorting in Spark SQL Session 20 - Performance difference between sort and orderBy in PySpark Session 21 - Aggregations in PySpark Session 22 - Simple Aggregations in PySpark - Count, Average, Max, Min Session 23 - Introduction to Grouping aggregations in PySpark Session 24 - Grouping aggregations in PySpark - Continuation Session 25 - Grouping aggregations in PySpark - Continuation 1 Session 26 - Grouping Aggregations on Multiple Columns in PySpark Session 27 - Grouping Aggregations on Multiple Columns in PySpark Continuation Session 28 - Running multiple grouping aggregations together Session 29 - Windowing Aggregations in PySpark - Row_Number Session 30 - Windowing Aggregations in PySpark - Rank Session 31 - Windowing Aggregations in PySpark - Dense Rank Session 32 - Remove duplicates using PySpark window functions Session 33 - Top scorer students in each subject using PySpark window functions Session 34 - PySpark Window Function Lead Data Frame Session 35 - PySpark Window Function Lead Spark SQL Session 36 - PySpark Window Function - LAG Session 37 - CASE WHEN in PySpark - One when Condition Session 38 - CASE WHEN in PySpark - Multiple when Conditions and Multiple Conditions within when Session 39 - WHEN Otherwise in PySpark - One when Condition Session 40 - WHEN Otherwise in PySpark - Multiple when Conditions Session 41 - Working With dates in PySpark - Python List Session 42 - Working With dates in PySpark - Storage Location Session 43 - Adding created timestamp and created date to the newly added data in PySpark Session 44 - Joins in PySpark - Theory Session 45 - Inner Join in PySpark - Joining over one Column Session 46 - Inner Join in PySpark - Joining over one Column - NULL values in joining Columns Session 47 - Inner Join in PySpark - Joining over multiple Columns Session 48 - Left Outer Join in PySpark - Joining over one Column Session 49 - Left Outer Join in PySpark - Joining over one Column - NULL values in joining Columns Session 50 - Left Outer Join in PySpark - Joining over multiple Columns Session 51 - Right Outer Join in PySpark - Joining over one Column Session 52 - Right Outer Join in PySpark - Joining over one Column - NULL values in joining Columns Session 53 - Right Outer Join in PySpark - Joining over multiple Columns Session 54 - Full Outer Join in PySpark - Joining over one Column Session 55 - Full Outer Join in PySpark - Joining over one Column - NULL values in joining Columns Session 56 - Full Outer Join in PySpark - Joining over multiple Columns Session 57 - Left Semi Join in PySpark Session 58 - Left Anti Join in PySpark Session 59 - Reading Single Line JSON file as PySpark Data frame Session 60 - Reading Multi Line JSON file as PySpark Data frame Session 61 - Reading parquet file as PySpark data frame Session 62 - Data Frame writer API and data frame writer Modes
Who this course is for
Beginner and Experienced PySpark and Spark SQL Developers


Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten