Next - Gen Pentesting: Using AI to Accelerate - (2025) version

0dayddl

U P L O A D E R

f67ec626c4de08a80992cb1afcedeb81.jpg

Next-Gen Pentesting: Using AI to Accelerate - 2025 version
Published 8/2025
Duration: 3h 41m | .MP4 1280x720 30 fps(r) | AAC, 44100 Hz, 2ch | 2.78 GB
Genre: eLearning | Language: English​

Unlock the power of AI to automate repetitive pentesting tasks, enhance recon, and optimize your offensive security work

What you'll learn
- Automate time-consuming pentesting tasks using AI-powered tools and scripts
- Use AI to generate, optimize, and validate command-line arguments for common pentesting utilities
- Integrate AI into reconnaissance, vulnerability scanning, and reporting workflows
- Understand the limitations and strengths of AI in offensive security operations

Requirements
- Solid understanding of penetration testing methodologies will help. If you dont have experience, you will learn something new.
- Familiarity with Linux command line and scripting (Python/Bash)
- Experience with common pentesting tools (Nmap, Metasploit, etc.)
- Basic knowledge of AI concepts is helpful but not required

Description
Overview

AI is transforming the penetration testing landscape-not by replacing skilled professionals, but by automating the repetitive, time-consuming tasks that slow you down. This course is a hands-on, practical guide to integrating AI into your offensive security workflow, focusing on real-world use cases that save time and boost efficiency.

What You'll Cover

AI Automation in Reconnaissance:Learn how to use AI to automate asset discovery, subdomain enumeration, and OSINT gathering, freeing up your time for deeper analysis.

Command Optimization:Discover how AI can suggest, generate, and validate command-line arguments for tools like Nmap, Nikto, and Metasploit, reducing errors and precision.

Vulnerability Scanning & Reporting:Integrate AI-driven tools to streamline vulnerability scanning, triage findings, and auto-generate professional reports.

Limitations & Best Practices:Understand where AI excels and where human expertise is irreplaceable. Learn to identify tasks best suited for automation versus those requiring manual intervention.

Why Take This Course?

Hands-On Demos:Every module includes practical labs and real-world scenarios.

Tooling Focus:Get up to speed with the latest AI-powered pentesting tools, scripts, and APIs.

No Fluff:Direct, actionable content designed for busy security professionals.

By the end of this course, you'll be able to leverage AI to automate your pentesting workflow, optimize your tool usage, and focus your expertise where it matters most.

Happy hacking with AI.

Who this course is for:
- Offensive security professionals and red teamers
- Offensive security professionals and red teamers
- Security engineers and sysadmins automating security workflows
- Anyone interested in practical applications of AI in cybersecurity
Bitte Anmelden oder Registrieren um Links zu sehen.


Please check out others courses in your favourite language and bookmark them
- - - -

oJIh1K0u_o.jpg



RapidGator
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
NitroFlare
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
DDownload
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten