jinkping5

U P L O A D E R
7cf7a8065aea48e5a328b9b4d06ebf35.jpg

(pmi-Cpmai™) Exam Prep: Managing Ai Projects With Confidence
Published 2/2026
Created by Chartered Engineers
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz, 2 Ch
Level: All Levels | Genre: eLearning | Language: English | Duration: 6 Lectures ( 1h 40m ) | Size: 1.6 GB​
A complete, exam-focused guide to managing AI projects using data-centric, real-world project management practices
What you'll learn
✓ Understand the CPMAI methodology and how it differs from traditional project management
✓ Explain why AI projects fail and how to prevent common failure patterns
✓ Define AI project scope in environments with uncertainty and learning
✓ Assess AI feasibility and risk before major investments
✓ Evaluate data readiness, data quality, and ground truth
✓ Manage data labeling, pipelines, and quality controls
✓ Align AI initiatives with business value and ROI
✓ Select the right AI pattern for different business problems
✓ Apply AI-specific metrics across the project lifecycle
✓ Make Go / No-Go decisions using data-driven criteria
Requirements
● Basic understanding of project management concepts
Description
"This course contains the use of artificial intelligence."
Course Description
Artificial Intelligence projects fail more often than traditional IT projects - not because of technology, but because they are managed incorrectly.
This course is a complete, structured, and exam-oriented preparation program designed to help you pass the PMI-CPMAI™ exam and, more importantly, manage AI projects successfully in real life.
You will learn how AI projects are different, how to manage data, uncertainty, iteration, risk, governance, and value, and how to think like a modern AI-ready project manager.
The course follows a clear, logical progression aligned with the CPMAI lifecycle, using professional HD slides, real-world examples, exam focus sections, and common exam traps.
This is not a technical AI course.
This is a management and decision-making course for professionals working with AI initiatives.
What You Will Learn (Course Outcomes)
By the end of this course, you will be able to
• Understand the CPMAI methodology and how it differs from traditional project management
• Explain why AI projects fail and how to prevent common failure patterns
• Define AI project scope in environments with uncertainty and learning
• Assess AI feasibility and risk before major investments
• Evaluate data readiness, data quality, and ground truth
• Manage data labeling, pipelines, and quality controls
• Align AI initiatives with business value and ROI
• Select the right AI pattern for different business problems
• Apply AI-specific metrics across the project lifecycle
• Understand data governance, privacy, and compliance responsibilities
• Make Go / No-Go decisions using data-driven criteria
• Confidently answer PMI-CPMAI exam-style questions
Who this course is for
■ Project Managers working on AI, data, or analytics initiatives
■ Product Managers involved in AI-driven products
■ Business Analysts supporting AI or data programs
■ Digital Transformation and Innovation professionals
■ IT Managers overseeing AI solutions
■ Consultants involved in AI strategy or delivery

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten