LLMs Foundations: Tokenization and Word Embeddings Models

0dayddl

U P L O A D E R

5b72ee87cd69cdb953af36c839be6826.jpg

LLMs Foundations: Tokenization and Word Embeddings Models
Published 9/2025
Duration: 6h 15m | .MP4 1280x720 30 fps(r) | AAC, 44100 Hz, 2ch | 1.40 GB
Genre: eLearning | Language: English​

LLMs, AI Chatbots, Word Embeddings Models, Tokenization, ChatGPT, NLP, Machine Learning, AI, Generative AI

What you'll learn
- Master LLM and AI chatbots foundation through knowing how and why word embeddings models and tokenization work the way they do.
- Learn how to build and use word embeddings models for real life applications like question answering
- Develop a "basic mini" LLM
- Master the mathematics of LLMs foundation in the most simplified and intuitive way
- Practically learn how to use Pytorch to build word embeddings models

Requirements
- Basic knowledge of python programming
- Basic knowledge of neural networks

Description
Unlock the foundational secrets behind Large Language Models (LLMs) and AI chatbots in this hands-on, beginner-friendly course designed to demystify the core building blocks of modern NLP systems. Whether you're an aspiring developer, AI enthusiast, or seasoned professional seeking deeper insights, this course offers a clear, intuitive, and practical approach to understanding tokenization and word embeddings-two pillars of LLM architecture. You will gain a true understanding of how and why word embedding models and tokenization work the way they do.

Through over 6 hours of engaging video content, you'll explore how tokenization transforms raw text into machine-readable units, and how word embeddings capture semantic meaning in multidimensional space. You'll learn to build your own word embedding models using PyTorch, apply them to real-world tasks like question answering, and even develop a basic mini LLM from scratch.

We break down complex mathematical concepts into digestible lessons, ensuring you grasp not just the "how," but the "why" behind each technique. By the end, you'll have a solid foundation in the mechanics of LLMs and the confidence to apply these skills in practical AI projects.

No advanced prerequisites-just basic Python and neural network knowledge. If you're ready to move beyond the hype and truly understand how AI chatbots work under the hood, this course is your launchpad.

Who this course is for:
- Beginner with basic knowledge of python programming and neural networks seeking true understanding and practical knowledge of LLMs and AI chatbots foundation
- The AI hobbyist, enthusiast, business manager or anyone who is seeking to just get a clear intuitive overview of the foundation of LLMs and AI chatbots
- An aspiring developer/professional/practitioner seeking true understanding and practical knowledge of LLMs and AI chatbots foundation
- An expert/professional in the field seeking to get better true understanding and deeper insights.
- Anyone seeking practical hands-on knowledge on the very foundations of LLMs and AI chatbots
Bitte Anmelden oder Registrieren um Links zu sehen.


GZZjUyap_o.jpg



RapidGator
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
NitroFlare
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
DDownload
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten