Knowledge Guided Machine Learning Accelerating Discovery using Scientific Knowledge and Data

booksz

U P L O A D E R
2679d478d61aff6cac57d2e82de4a7f4.webp

Free Download Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data
by Anuj Karpatne, Ramakrishnan Kannan
English | 2023 | ISBN: 0367693410 | 430 Pages | True ePUB | 17.7 MB

Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and data at an equal footing. Indeed, KGML involves diverse scientific and ML communities, where researchers and practitioners from various backgrounds and application domains are continually adding richness to the problem formulations and research methods in this emerging field.
Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers.
KEY FEATURES
First-of-its-kind book in an emerging area of research that is gaining widespread attention in the scientific and data science fields
Accessible to a broad audience in data science and scientific and engineering fields
Provides a coherent organizational structure to the problem formulations and research methods in the emerging field of KGML using illustrative examples from diverse application domains
Contains chapters by leading researchers, which illustrate the cutting-edge research trends, opportunities, and challenges in KGML research from multiple perspectives
Enables cross-pollination of KGML problem formulations and research methods across disciplines
Highlights critical gaps that require further investigation by the broader community of researchers and practitioners to realize the full potential of KGML



Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Links are Interchangeable - Single Extraction
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten