GenAI for Data Analytics

dkmdkm

U P L O A D E R
1088773c057e512c741a8729c32fcd2d.webp

Free Download GenAI for Data Analytics
Published 10/2025
Created by Starweaver Team
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: Intermediate | Genre: eLearning | Language: English | Duration: 132 Lectures ( 8h 48m ) | Size: 7 GB

Master GenAI, LLMs, and Autonomous Agents: Data Engineering, Model Development, and Production Deployment
What you'll learn
Design and implement comprehensive data pipelines for GenAI applications.
Develop and deploy autonomous AI agents and multi-agent systems.
Analyze prompt engineering and chain management for LLMs.
Build production-ready GenAI applications with monitoring and safety systems.
Requirements
Learners should have experience with Python programming and a basic understanding of machine learning concepts. Familiarity with APIs, cloud platforms, and command-line tools will help participants easily follow along with the practical exercises and implementation labs.
Description
Ever wondered how ChatGPT-like systems are built and deployed in the real world? Ready to move beyond basic prompts to creating your own AI agents? Welcome to "Generative AI Engineering" - your complete guide to building production-ready AI systems that actually work.In this comprehensive journey, you'll master not just the theory, but the actual engineering practices that power today's most advanced AI systems. From crafting robust data pipelines that feed your models, to building autonomous agents that can reason and act on their own, to deploying systems that scale reliably in production - we've got you covered. Whether you're looking to build the next groundbreaking AI application or enhance existing systems with state-of-the-art generative capabilities, this course provides the practical, hands-on experience you need to make it happen.By the end of this course, you will be able to:Design and implement comprehensive data pipelines for GenAI applications.Build and deploy autonomous AI agents that can solve complex tasks.Master prompt engineering techniques for optimal LLM performance.Implement RAG (Retrieval-Augmented Generation) systems for knowledge-intensive applications.Fine-tune foundation models to excel at specialized tasks.Deploy production-ready GenAI systems with proper monitoring and safety guardrails.Develop multi-agent systems that collaborate to solve complex problems.Don't just be a consumer of AI technology - become a creator who can engineer the next generation of intelligent systems. Join us and transform your theoretical knowledge into practical engineering skills that are in high demand across industries. Enroll now and start building the future of AI!
Who this course is for
This course is designed for software engineers, data scientists, ML engineers, and DevOps professionals looking to advance their expertise in generative AI. It's ideal for those transitioning into AI development, expanding their understanding of large language models, or managing AI-driven deployments in production environments.
Homepage
Bitte Anmelden oder Registrieren um Links zu sehen.

Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
No Password - Links are Interchangeable
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten