Extension, Separation and Isomorphic Reverse Isoperimetry

booksz

U P L O A D E R
3e40cb1f1f682083f4d919e46cf2009d.webp

Free Download Extension, Separation and Isomorphic Reverse Isoperimetry
by Assaf Naor
English | 2024 | ISBN: 3985470693 | 244 Pages | True PDF | 1.43 MB

The Lipschitz extension modulus e(M) of a metric space M is the infimum over those L∈[1,∞] such that for any Banach space Z and any C⊆M, any 1-Lipschitz function f:C→Z can be extended to an L-Lipschitz function F:M→Z. Johnson, Lindenstrauss and Schechtman proved (1986) that if X is an n-dimensional normed space, then e(X)≲n. In the reverse direction, we prove that every n-dimensional normed space X satisfies e(X)≳n c , where c>0 is a universal constant. Our core technical contribution is a geometric structural result on stochastic clustering of finite dimensional normed spaces which implies upper bounds on their Lipschitz extension moduli using an extension method of Lee and the author (2005). The separation modulus of a metric space (M,d M ) is the infimum over those σ∈(0,∞] such that for any Δ>0 there is a distribution over random partitions of M into clusters of diameter at most Δ such that for every two points x,y∈M the probability that they belong to different clusters is at most σd M (x,y)/Δ. We obtain upper and lower bounds on the separation moduli of finite dimensional normed spaces that relate them to well-studied volumetric invariants (volume ratios and projection bodies). Using these connections, we determine the asymptotic growth rate of the separation moduli of various normed spaces. If X is an n-dimensional normed space with enough symmetries, then our bounds imply that its separation modulus is equal to vr(X ∗ ) n up to factors of lower order, where vr(X ∗ ) is the volume ratio of the unit ball of the dual of X. We formulate a conjecture on isomorphic reverse isoperimetric properties of symmetric convex bodies (akin to Ball's reverse isoperimetric theorem (1991), but permitting a non-isometric perturbation in addition to the choice of position) that can be used with our volumetric bounds on the separation modulus to obtain many more exact asymptotic evaluations of the separation moduli of normed spaces. Our estimates on the separation modulus imply asymptotically improved upper bounds on the Lipschitz extension moduli of various classical spaces. In particular, we deduce an improved upper bound on e(l pn ) when p>2 that resolves a conjecture of Brudnyi and Brudnyi (2005), and we prove that e(l ∞n )≍ n , which is the first time that the growth rate of e(X) has been evaluated (as dim(X)→∞) for any finite dimensional normed space X.



Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Links are Interchangeable - Single Extraction
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten