Deploy a Production Machine Learning model with AWS & React

0dayddl

U P L O A D E R

359020115_tuto.jpg


Deploy a Production Machine Learning model with AWS & React
Language: English | Size:2.41 GB
Genre:eLearning

Files Included :
001 Course overview.mp4 (16.16 MB)
MP4
002 What we're going to build.mp4 (28.71 MB)
MP4
003 Introduction.mp4 (6.44 MB)
MP4
001 Setting Up IAM Policies.mp4 (79.98 MB)
MP4
002 Setting Up SageMaker.mp4 (45.63 MB)
MP4
003 Launching our SageMaker notebook.mp4 (21.61 MB)
MP4
001 Cost optimazation and other Tips.mp4 (41.43 MB)
MP4
001 Get data from Kaggle Part 1.mp4 (65.18 MB)
MP4
002 Get Data from Kaggle Part 2.mp4 (3.31 MB)
MP4
003 Important.mp4 (4.98 MB)
MP4
004 Visualizing images.mp4 (41.26 MB)
MP4
005 Correction.mp4 (4.49 MB)
MP4
006 Resizing images(Theory).mp4 (17.44 MB)
MP4
007 Computer Vision Part 1.mp4 (13.22 MB)
MP4
008 Computer Vision Part 2.mp4 (130.1 MB)
MP4
009 Resizing our images(Coding).mp4 (44.7 MB)
MP4
010 Check the resized images.mp4 (57.23 MB)
MP4
011 Data Visualization.mp4 (14.1 MB)
MP4
012 Creating our DataFrame for Visualization.mp4 (53.95 MB)
MP4
013 Creating our Bar Graphs.mp4 (7.37 MB)
MP4
014 Making our Graphs nicer.mp4 (15.53 MB)
MP4
001 What are lst Files.mp4 (54.75 MB)
MP4
002 Creating Pandas DataFrame for lst files.mp4 (36.87 MB)
MP4
003 Creating our lst files.mp4 (17.02 MB)
MP4
004 Upload images and lst files to S3.mp4 (48 MB)
MP4
005 Correction and Verify Upload.mp4 (9.52 MB)
MP4
006 Setting up our Estimator object for training.mp4 (35.04 MB)
MP4
008 Setting up Hyperparameter Tuning.mp4 (27.54 MB)
MP4
009 Setting up Hyperparameters ranges.mp4 (26.39 MB)
MP4
010 Correction.mp4 (8.7 MB)
MP4
011 Setting up our Training Job.mp4 (53.5 MB)
MP4
012 Starting our Training Job.mp4 (11.46 MB)
MP4
001 Evaluating our Training Job.mp4 (128.29 MB)
MP4
002 Deploying our model locally.mp4 (46.5 MB)
MP4
003 Getting our First Inference.mp4 (40.81 MB)
MP4
004 Constructing our confusion matrix.mp4 (82.18 MB)
MP4
005 Recall, Precision, F1 Score.mp4 (30.58 MB)
MP4
006 Shutting down our Endpoint.mp4 (6.91 MB)
MP4
001 Creating IAM Policy for our lambda function.mp4 (45.16 MB)
MP4
002 Coding our Lambda function.mp4 (80.52 MB)
MP4
003 Creating Our API Gateway.mp4 (39.68 MB)
MP4
004 Adding Endpoint name to Lambda.mp4 (5.65 MB)
MP4
005 Image shape for Inference.mp4 (4.57 MB)
MP4
006 Testing Our Endpoint with Postman.mp4 (31.53 MB)
MP4
007 Setting up Lambda Concurrency.mp4 (12.93 MB)
MP4
002 Setting up our MongoDB database.mp4 (25.46 MB)
MP4
003 Downloading source code from Github.mp4 (18.92 MB)
MP4
004 Launching our web application locally.mp4 (82.61 MB)
MP4
005 Set Axios URL to our Endpoint.mp4 (5.08 MB)
MP4
006 MERN app walkthrough Part 1.mp4 (184.7 MB)
MP4
007 Start your Endpoint.mp4 (8.58 MB)
MP4
008 MERN app walkthrough Part 2.mp4 (79.39 MB)
MP4
001 AutoScaling for our Endpoint Part 1.mp4 (28.04 MB)
MP4
002 AutoScaling for our Endpoint Part 2.mp4 (51.25 MB)
MP4
003 Securing our Endpoint Part 1.mp4 (33.92 MB)
MP4
004 Securing our Endpoint Part 2.mp4 (4.77 MB)
MP4
001 Creating our DigitalOcean account.mp4 (6.56 MB)
MP4
002 Setting Up our DigitalOcean server.mp4 (11.24 MB)
MP4
003 SSH-ing into our DigitalOcean droplet.mp4 (27.45 MB)
MP4
004 Installing Node js and NPM to our droplet.mp4 (58.31 MB)
MP4
005 Creating our Frontend and Backend repositories.mp4 (20.73 MB)
MP4
006 Clone Repos from Github and Install Nginx.mp4 (73.56 MB)
MP4
007 Create env Files and Setting up MongoDB.mp4 (41.27 MB)
MP4
008 Starting our Backend.mp4 (29.83 MB)
MP4
009 Running our Frontend.mp4 (11.31 MB)
MP4
010 Changing IP addresses.mp4 (16.91 MB)
MP4
011 Testing on random images from the Internet.mp4 (31.41 MB)
MP4
001 Delete Amazon SageMaker Endpoint.mp4 (5.91 MB)
MP4
002 Clean Up and Next Steps.mp4 (14.25 MB)
MP4

zuF10ff4_t.jpg


363506399_rg.png

Deploy a Production Machine Learning model with AWS & React.z01

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Deploy a Production Machine Learning model with AWS & React.z02

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Deploy a Production Machine Learning model with AWS & React.z03

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Deploy a Production Machine Learning model with AWS & React.z04

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Deploy a Production Machine Learning model with AWS & React.zip

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!

banner_240-32.png

Deploy a Production Machine Learning model with AWS & React.z01

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Deploy a Production Machine Learning model with AWS & React.z02

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Deploy a Production Machine Learning model with AWS & React.z03

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Deploy a Production Machine Learning model with AWS & React.z04

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Deploy a Production Machine Learning model with AWS & React.zip

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

2507b7789010d77607a1bbcef5383553.jpg

Deploy a Production Machine Learning model with AWS & React
Last updated 7/2023
Duration: 5h 45m | .MP4 1280x720, 30 fps(r) | AAC, 44100 Hz, 2ch | 2.41 GB
Genre: eLearning | Language: English​

Build a Scalable and Secure, Deep Learning Image Classifier with SageMaker, Next.js, Node.js, MongoDB & DigitalOcean

What you'll learn
Deploy a production ready robust, scalable, secure Machine Learning application
Set up Hyperparameter Tuning in AWS
Find the best Hyperparameters with Bayesian search
Use Matplotlib, Numpy, Pandas, Seaborn in SageMaker
Use AutoScaling for our deployed Endpoints in AWS
Use multi-instance GPU instance for training in AWS
Learn how to use SageMaker Notebooks for any Machine Learning task in AWS
Set up AWS API Gateway to deploy our model to the internet
Secure AWS Endpoints with limited IP address access
Use any custom dataset for training
Set up IAM policies in AWS
Set up Lambda concurrency in AWS
Data Visualization in SageMaker
Learn how to do MLOps in AWS
Build and deploy a MongoDB, Express, Nodejs, React/nextjs application to DigitalOcean
Create an end to end machine learning pipeline all the way from gathering data to deployment
File Mode vs Pipe Mode when training deep learning models on AWS
Use AWS' built in Image Classifier
Create deep learning models with AWS SageMaker
Learn how to access any AWS built in algorithm from AWS ECR
Use CloudWatch logs to monitor training jobs and inferences
Analyze machine learning models with Confusion matrix, F1 score, Recall, and Precision
Access AWS endpoint through a deployed MERN web application running on DigitalOcean
Build a beautiful web application
Learn how to combine AI and Machine Learning with Healthcare
Set up Data Augmentation in AWS
Machine Learning with Python
JavaScript to deploy MERN apps

Requirements
Any laptop and an internet connection
Some Python and Machine Learning Knowledge
about 15-40 dollars for using AWS resources(Optional, only applies if you follow along with me)
Description
In this course we are going to use AWS Sagemaker, AWS API Gateway, Lambda, React.js, Node.js, Express.js MongoDB and DigitalOcean to create a secure, scalable, and robust production ready enterprise level image classifier. We will be using best practices and setting up IAM policies to first create a secure environment in AWS. Then we will be using AWS' built in SageMaker Studio Notebooks where I am going to show you guys how you can use any custom dataset you want. We will perfrom Exploratory data analysis on our dataset with Matplotlib, Seaborn, Pandas and Numpy. After getting insightful information about dataset we will set up our Hyperparameter Tuning Job in AWS where I will show you guys how to use GPU instances to speed up training and I will even show you guys how to use multi GPU instance training. We will then evaluate our training jobs, and look at some metrics such as Precision, Recall and F1 Score. Upon evaluation we will deploy our deep learning model on AWS with the help of AWS API Gateway and Lambda functions. We will then test our API with Postman, and see if we get inference results. After that is completed we will secure our endpoints and set up autoscaling to prevent latency issues. Finally we will build our web application which will have access to the AWS API. After that we will deploy our web application to DigitalOcean.
Who this course is for:
Those with some ML experience who are hoping to take their skills to the next step by being able to deploy their deep learning models to production

Bitte Anmelden oder Registrieren um Links zu sehen.


J1lndJzm_o.jpg



AusFile
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
DDownload
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
RapidGator
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten