Applied Machine Learning with Scikit-learn Definitive Reference for Developers and Engineers

booksz

U P L O A D E R
46bac48fc75bb7389b3a0a1cf18a0b05.webp

Free Download Applied Machine Learning with Scikit-learn: Definitive Reference for Developers and Engineers
Richard Johnson
English | 2025 | ASIN: B0FDYQ663N | 296 Pages | ePUB | 0.68 MB

"Applied Machine Learning with Scikit-learn" is a comprehensive and in-depth guide that empowers readers to build robust machine learning solutions using the popular Scikit-learn library. The book navigates through the complete lifecycle of machine learning projects, starting from the foundational architecture and integration of Scikit-learn within the broader PyData ecosystem, to advanced data preparation, feature engineering, and the design of custom components. Readers benefit from best practices in scalability, reproducibility, and extensibility, while gaining insights into contributing to and extending the library to suit cutting-edge applications.
A core strength of this book is its rigorous treatment of both supervised and unsupervised learning techniques. It offers advanced coverage on classification and regression models-including linear methods, ensemble approaches, support vector machines, and probabilistic classifiers-while addressing practical challenges like imbalanced data, custom scoring, and evaluation strategies. The unsupervised learning chapters explore clustering, dimensionality reduction, density estimation, and feature discovery, complete with methodologies for model selection, validation, and interpretation. Specialized sections on experiment tracking, hyperparameter tuning, and prevention of data leakage ensure that readers can conduct reliable analyses in research or production settings.
Recognizing the growing importance of model deployment, monitoring, and integration, the book dedicates ample attention to scaling workflows, building production-grade APIs, automating model retraining, and complying with security



Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Links are Interchangeable - Single Extraction
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten